Advertisements
Advertisements
Question
Solution
\[I = \int\frac{x + 5}{3 x^2 + 13x - 10}dx\]
\[ = \int\frac{x + 5}{3 x^2 + 15x - 2x - 10}dx\]
\[ = \int\frac{x + 5}{3x\left( x + 5 \right) - 2\left( x + 5 \right)}dx\]
\[ = \int\frac{x + 5}{\left( 3x - 2 \right)\left( x + 5 \right)}dx\]
\[= \int\frac{x + 5}{(3x - 2)(x + 5)}dx\]
\[ = \int\frac{1}{3x - 2}dx\]
\[ \therefore I = \frac{1}{3}\text{ ln }\left| 3x - 2 \right| + c\]
APPEARS IN
RELATED QUESTIONS
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`