Advertisements
Advertisements
Question
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Solution
I = \[\int\frac{1}{x\left( 1 + \log x \right)} \text{ dx }\]
Let (1 + log x) = t
or,\[ \frac{1}{x}dx = dt\]
\[ \Rightarrow I = \int\frac{1}{t}dt\]
\[\Rightarrow I = \text{ log }\left| t \right| + C\]
\[ \therefore I = \text{ log}\left| 1 + \log x \right| + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^3dx/(9+x^2)`
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate:
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`