English

Evaluate the Following Integral: ∫ 1 Sin 4 X + Sin 2 X Cos 2 X + Cos 4 X D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]
Sum

Solution

\[\text{ Let I} = \int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]
\[ = \int\frac{1}{\left( \sin^2 x + \cos^2 x \right)^2 - \sin^2 x \cos^2 x}dx\]
\[ = \int\frac{1}{1 - \sin^2 x \cos^2 x}dx\]
\[ = \int\frac{\frac{1}{\cos^4 x}}{\frac{1}{\cos^4 x} - \frac{\sin^2 x}{\cos^2 x}}dx\]
\[ = \int\frac{\sec^2 x\left( 1 + \tan^2 x \right)}{\sec^4 x - \tan^2 x}dx\]
\[ \text{ Let  tan x }= t\]
\[ \text{On differentiating both sides, we get}\]
\[ \sec^2 \text{ x dx }= dt\]
\[ \therefore I = \int\frac{1 + t^2}{\left( 1 + t^2 \right)^2 - t^2}dt\]
\[ = \int\frac{1 + t^2}{\left( t^4 + t^2 + 1 \right)}dt\]
\[ = \int\frac{\frac{1}{t^2} + 1}{\left( t^2 + 1 + \frac{1}{t^2} \right)}dt\]
\[ = \int\frac{\frac{1}{t^2} + 1}{\left( t - \frac{1}{t} \right)^2 + 3}dt\]
\[ \text{ Let }\left( t - \frac{1}{t} \right) = u\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( 1 + \frac{1}{t^2} \right) dt = du\]
\[ \therefore I = \int\frac{1}{\left( u \right)^2 + 3}du\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{u}{\sqrt{3}} \right) + c\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{t - \frac{1}{t}}{\sqrt{3}} \right) + c\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{\tan x - \cot x}{\sqrt{3}} \right) + c\]
\[\text{ Hence,} \int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{\tan x - \cot x}{\sqrt{3}} \right) + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.31 [Page 190]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.31 | Q 11 | Page 190

RELATED QUESTIONS

Evaluate : `int_0^3dx/(9+x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{x}{\sqrt{x + 4}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×