English

Evaluate the Following Integrals: ∫ 5 X − 2 1 + 2 X + 3 X 2 D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int\frac{5x - 2}{1 + 2x + 3 x^2}dx\]
\[ = \int\frac{5x - 2}{3 x^2 + 2x + 1}dx\]
\[\text{We express}\ 5x - 2 = A\left( \frac{d}{d x}\left( 3 x^2 + 2x + 1 \right) \right) + B\]
\[5x - 2 = A(6x + 2) + B\]
\[\text{Equating the coefficients of x and constants, we get}\]
\[\text{ 5 = 6A and - 2 = 2A + B }\]
\[\text{ or A } = \frac{5}{6} \text{ and B }= - \frac{11}{3} \]
\[ \therefore I = \int\frac{\frac{5}{6}\left( 6x + 2 \right) - \frac{11}{3}}{3 x^2 + 2x + 1}dx\]
\[ = \frac{5}{6}\int\frac{\left( 6x + 2 \right)}{3 x^2 + 2x + 1}dx - \frac{11}{3}\int\frac{1}{3 x^2 + 2x + 1}dx\]
\[ = \frac{5}{6} I_1 - \frac{11}{3} I_2 . . . (1)\]
\[\text{ Now, } I_1 = \int\frac{\left( 6x + 2 \right)}{3 x^2 + 2x + 1}dx\]
\[ \text{ Let 3 x}^2 + 2x + 1 = t\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( 6x + 2 \right)dx = dt\]
\[ \therefore I_1 = \int\frac{1}{t}dt\]
\[ = \text{ log }\left| t \right| + c_1 \]
\[ = \text{ log}\left| 3 x^2 + 2x + 1 \right| + c_1 . . . (2)\]
\[\text{ And,} I_2 = \int\frac{1}{3 x^2 + 2x + 1}dx\]
\[ = \frac{1}{3}\int\frac{1}{x^2 + \frac{2}{3}x + \frac{1}{3}}dx\]
\[ = \frac{1}{3}\int\frac{1}{x^2 + \frac{2}{3}x + \frac{1}{9} - \frac{1}{9} + \frac{1}{3}}dx\]
\[ = \frac{1}{3}\int\frac{1}{\left( x + \frac{1}{3} \right)^2 + \left( \frac{\sqrt{2}}{3} \right)^2}dx\]
\[ \text{ Let x } + \frac{1}{3} = t\]
\[ \text{On differentiating both sides, we get}\]
\[ dx = dt\]
\[ \therefore I_2 = \frac{1}{3}\int\frac{1}{\left( t \right)^2 + \left( \frac{\sqrt{2}}{3} \right)^2}dt\]
\[ = \frac{1}{3} \times \frac{1}{\frac{\sqrt{2}}{3}} \tan^{- 1} \frac{3t}{\sqrt{2}} + c_2 \]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \frac{3\left( x + \frac{1}{3} \right)}{\sqrt{2}} + c_2 \]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \frac{3x + 1}{\sqrt{2}} + c_2 . . . (3)\]
\[\text{ From (1), (2) and (3), we get}\]
\[ \therefore I = \frac{5}{6}\left( \log\left| 3 x^2 + 2x + 1 \right| + c_1 \right) - \frac{11}{3}\left( \frac{1}{\sqrt{2}} \tan^{- 1} \frac{3x + 1}{\sqrt{2}} + c_2 \right)\]
\[ = \frac{5}{6}\left( \log\left| 3 x^2 + 2x + 1 \right| \right) - \frac{11}{3}\left( \frac{1}{\sqrt{2}} \tan^{- 1} \frac{3x + 1}{\sqrt{2}} \right) + c\]
\[\text{ Hence }, \int\frac{5x - 2}{1 + 2x + 3 x^2}dx = \frac{5}{6}\left( \log\left| 3 x^2 + 2x + 1 \right| \right) - \frac{11}{3}\left( \frac{1}{\sqrt{2}} \tan^{- 1} \frac{3x + 1}{\sqrt{2}} \right) + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.19 [Page 104]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.19 | Q 12 | Page 104

RELATED QUESTIONS

Evaluate : `int_0^3dx/(9+x^2)`


`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×