English

Evaluate the Following Integrals: ∫ √ 1 + X 2 X 4 D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals:

1+x2x4dx
Sum

Solution

 Let I =1+x2x4dx

Let x=tanθ

On differentiating both sides, we get

dx=sec2 θ  dθ

I=1+tan2θtan4θsec2θdθ

=sec3θtan4θdθ

=cosθsin4θdθ

=cot θ  cosec3θ dθ

Let  cosec3θ=t 

On differentiating both sides, we get

-3 cosec3θ  cotθ dθ=dt

I=13cotθ cosec 3θdtcosec3θcotθ

=t3+c

=13(cosec3θ)+c

=13(cosec(tan1x))3+c

=13(cosec(cosec11+x2x))3+c

=13(1+x2x)3+c

Hence,1+x2x4dx=13(1+x2x)3+c

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.13 [Page 79]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.13 | Q 4 | Page 79
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.