Advertisements
Advertisements
प्रश्न
Evaluate the following integrals:
उत्तर
\[\text{ Let I } = \int\frac{\sqrt{1 + x^2}}{x^4}dx\]
\[ \text{Let x} = \tan\theta\]
\[ \text{On differentiating both sides, we get}\]
` dx = sec^2 θ dθ `
\[ \therefore I = \int\frac{\sqrt{1 + \tan^2 \theta}}{\tan^4 \theta} \sec^2 \theta d\theta\]
\[ = \int\frac{\sec^3 \theta}{\tan^4 \theta}d\theta\]
\[ = \int\frac{\cos\theta}{\sin^4 \theta}d\theta\]
` = ∫ cot θ "cosec"^3 θ dθ `
` Let "cosec"^3θ = t`
\[ \text{On differentiating both sides, we get}\]
` - 3 \text{ cosec}^3 θ cot θ dθ = dt `
\[ \therefore I = - \frac{1}{3}\int\cotθ \text{ cosec }^3 \theta \frac{dt}{{cosec}^3 \theta \cot\theta}\]
\[ = - \frac{t}{3} + c\]
\[ = - \frac{1}{3}\left( {cosec}^3 \theta \right) + c\]
\[ = - \frac{1}{3} \left( cosec\left( \tan^{- 1} x \right) \right)^3 + c\]
\[ = - \frac{1}{3} \left( cosec\left( {cosec}^{- 1} \frac{\sqrt{1 + x^2}}{x} \right) \right)^3 + c\]
\[ = - \frac{1}{3} \left( \frac{\sqrt{1 + x^2}}{x} \right)^3 + c\]
\[Hence, \int\frac{\sqrt{1 + x^2}}{x^4}dx = - \frac{1}{3} \left( \frac{\sqrt{1 + x^2}}{x} \right)^3 + c\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`