Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\tan x \cdot \sec^2 x \sqrt{1 - \tan^2 x} dx\]
\[\text{Let} \tan x = t\]
\[ \Rightarrow \text{sec}^2 \text{x dx }= dt\]
Now, ` ∫ tan x . sec^2 x \sqrt{1 - tan^2 x} dx\ `
\[ = \ ∫ t \cdot \sqrt{1 - t^2}dt\]
` "Again let " t^2 = p `
\[ \Rightarrow \text{2t dt} = dp\]
\[ \Rightarrow \text{t dt} = \frac{dp}{2}\]
\[Again, \ ∫ t \cdot \sqrt{1 - t^2}dt\]
\[ = \frac{1}{2}\int\sqrt{1 - p} \text{dp}\]
\[ = \frac{1}{2}\int \left( 1 - p \right)^\frac{1}{2} \text{dp}\]
\[ = \frac{1}{2}\left[ \frac{\left( 1 - p \right)^\frac{1}{2} + 1}{\left( \frac{1}{2} + 1 \right) \left( - 1 \right)} \right] + C\]
\[ = \frac{1}{2} \times \frac{- 2}{3} \left( 1 - p \right)^\frac{3}{2} + C\]
\[ = - \frac{1}{3} \left( 1 - p \right)^\frac{3}{2} + C\]
\[ = - \frac{1}{3} \left( 1 - \tan^2 x \right)^\frac{3}{2} + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`