मराठी

∫ Tan X Sec 2 X √ 1 − Tan 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `
बेरीज

उत्तर

\[\int\tan x \cdot \sec^2 x \sqrt{1 - \tan^2 x} dx\]
\[\text{Let} \tan x = t\]
\[ \Rightarrow \text{sec}^2 \text{x dx }= dt\]
Now,  `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `
\[ = \     ∫     t \cdot \sqrt{1 - t^2}dt\]
` "Again let "  t^2 = p `
\[ \Rightarrow \text{2t dt} = dp\]
\[ \Rightarrow \text{t dt} = \frac{dp}{2}\]
\[Again, \ ∫   t \cdot \sqrt{1 - t^2}dt\]
\[ = \frac{1}{2}\int\sqrt{1 - p}    \text{dp}\]
\[ = \frac{1}{2}\int \left( 1 - p \right)^\frac{1}{2} \text{dp}\]
\[ = \frac{1}{2}\left[ \frac{\left( 1 - p \right)^\frac{1}{2} + 1}{\left( \frac{1}{2} + 1 \right) \left( - 1 \right)} \right] + C\]
\[ = \frac{1}{2} \times \frac{- 2}{3} \left( 1 - p \right)^\frac{3}{2} + C\]
\[ = - \frac{1}{3} \left( 1 - p \right)^\frac{3}{2} + C\]
\[ = - \frac{1}{3} \left( 1 - \tan^2 x \right)^\frac{3}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 41 | पृष्ठ ५८

संबंधित प्रश्‍न

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×