Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{1}{\sin x \cos^2 x}dx\]
\[ = \int\frac{\sin^2 x + \cos^2 x}{\sin x \cos^2 x}dx\]
\[ = \int\tan x \sec x + cosec\ x\ dx\]
\[ = \sec x + \text{ln} \left| cosec\ x - \cot x \right| + C\]
\[ = \sec x + \text{ln} \left| \tan\frac{x}{2} \right| + C \left[ \because cosec\ x - \ cot\ x = \frac{1 - \ cosx}{\sin x} = \tan\frac{x}{2} \right]\]
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`