मराठी

∫ ( 3 X + 1 ) √ 4 − 3 X − 2 X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]
बेरीज

उत्तर

\[I = \int\left( 3x + 1 \right)\sqrt{4 - 3x - 2 x^2} \text{  dx }\]
\[\text{ Let }\left( 3x + 1 \right) = A\frac{d}{dx}\left( 4 - 3x - 2 x^2 \right) + B\]
\[ \Rightarrow \left( 3x + 1 \right) = A\left( - 3 - 4x \right) + B\]
\[ \Rightarrow \left( 3x + 1 \right) = - 4\text{ Ax} + \left( B - 3A \right)\]
\[ \Rightarrow 3 = - 4\text{ A and }\left( B - 3A \right) = 1\]
\[ \Rightarrow A = - \frac{3}{4} \text{ and B }= - \frac{5}{4}\]

\[\Rightarrow \left( 3x + 1 \right) = - \frac{3}{4}\left( - 3 - 4x \right) - \frac{5}{4}\]
\[ \Rightarrow I = - \frac{3}{4}\int\left( - 3 - 4x \right)\sqrt{4 - 3x - 2 x^2}dx - \frac{5}{4}\int\sqrt{4 - 3x - 2 x^2}dx\]
\[Let I = - \frac{3}{4} I_1 - \frac{5}{4} I_2 . . . \left( i \right)\]
\[\text{ Now, } \]
\[ I_1 = \int\left( - 3 - 4x \right)\sqrt{4 - 3x - 2 x^2}dx\]
\[\text{ Let } \left( 4 - 3x - 2 x^2 \right) = t, or, \left( - 3 - 4x \right)dx = dt\]
\[ \Rightarrow I_1 = \int\sqrt{t}dt\]
\[ = \frac{2}{3} t^\frac{3}{2} + c_1 \]
\[ \Rightarrow I_1 = \frac{2}{3} \left( 4 - 3x - 2 x^2 \right)^\frac{3}{2} + c_1\]

\[I_2 = \int\sqrt{4 - 3x - 2 x^2}dx\]
\[ = \int\sqrt{2\left( 2 - \frac{3}{2}x - x^2 \right)}dx\]
\[ = \sqrt{2}\int\sqrt{\left( \frac{17}{4} - \frac{9}{4} - \frac{3}{2}x - x^2 \right)}dx\]
\[ = \sqrt{2}\int\sqrt{\left[ \left( \frac{\sqrt{17}}{2} \right)^2 - \left( \frac{9}{4} + \frac{3}{2}x + x^2 \right) \right]}dx\]
\[ = \sqrt{2}\int\sqrt{\left[ \left( \frac{\sqrt{17}}{2} \right)^2 - \left( x + \frac{3}{2} \right)^2 \right]}dx\]
\[ = \sqrt{2}\sin\left( \frac{x + \frac{3}{2}}{\frac{\sqrt{17}}{2}} \right) + c_2 \]
\[ = \sqrt{2}\sin\left( \frac{2x + 3}{\sqrt{17}} \right) + c_2\]

Using (i), we get

\[I = - \frac{3}{4} \times \frac{2}{3} \left( 4 - 3x - 2 x^2 \right)^\frac{3}{2} - \frac{5}{4} \times \sqrt{2}\sin\left( \frac{2x + 3}{\sqrt{17}} \right) + C\]
\[ \therefore I = - \frac{1}{2} \left( 4 - 3x - 2 x^2 \right)^\frac{3}{2} - \frac{5\sqrt{2}}{4}\sin\left( \frac{2x + 3}{\sqrt{17}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.29 | Q 13 | पृष्ठ १५९

संबंधित प्रश्‍न

Evaluate : `int_0^3dx/(9+x^2)`


Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×