Advertisements
Advertisements
प्रश्न
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
उत्तर
\[\text{ Let I }= \int \frac{x^2 dx}{1 + x^3}\]
\[\text{ Putting 1} + x^3 = t\]
\[ \Rightarrow 3 x^2 \text{ dx} = dt\]
\[ \Rightarrow x^2 \text{ dx} = \frac{dt}{3}\]
\[ \therefore I = \frac{1}{3}\int \frac{dt}{t}\]
\[ = \frac{1}{3}\text{ ln } \left| t \right| + C\]
\[ = \frac{1}{3}\text{ ln} \left| 1 + x^3 \right| + C \left( \because t = 1 + x^3 \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`