Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]
\[\text{Multiplying and Dividing by} \sin\left[ \left( x + b \right) - \left( x + a \right) \right], \text{we get}\]
\[ = \int\frac{1}{\sin\left[ \left( x + b \right) - \left( x + a \right) \right]} \times \frac{\sin\left[ \left( x + b \right) - \left( x + a \right) \right]}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]
\[ = \int\frac{1}{\sin\left( b - a \right)} \times \frac{\sin\left[ \left( x + b \right) - \left( x + a \right) \right]}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]
\[ = \frac{1}{\sin\left( b - a \right)}\int\frac{\sin\left( x + b \right)\cos\left( x + a \right) - \sin\left( x + a \right)\cos\left( x + b \right)}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]
\[ = \frac{1}{\sin\left( b - a \right)}\left[ \int\frac{\sin\left( x + b \right)}{\cos\left( x + b \right)}dx - \int\frac{\sin\left( x + a \right)}{\cos\left( x + a \right)}dx \right]\]
\[ = \frac{1}{\sin\left( b - a \right)}\left[ \int\tan\left( x + b \right)dx - \int\tan\left( x + a \right)dx \right]\]
\[ = \frac{1}{\sin\left( b - a \right)}\left[ \log\left( \sec\left( x + b \right) \right) - \log\left( \sec\left( x + a \right) \right) \right] + c\]
\[ = \frac{1}{\sin\left( b - a \right)}\left[ \log\left( \frac{\sec\left( x + b \right)}{\sec\left( x + a \right)} \right) \right] + c\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`