मराठी

∫ 1 Cos ( X + a ) Cos ( X + B ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]
बेरीज

उत्तर

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]
\[\text{Multiplying and Dividing by} \sin\left[ \left( x + b \right) - \left( x + a \right) \right], \text{we get}\]
\[ = \int\frac{1}{\sin\left[ \left( x + b \right) - \left( x + a \right) \right]} \times \frac{\sin\left[ \left( x + b \right) - \left( x + a \right) \right]}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]
\[ = \int\frac{1}{\sin\left( b - a \right)} \times \frac{\sin\left[ \left( x + b \right) - \left( x + a \right) \right]}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]


\[ = \frac{1}{\sin\left( b - a \right)}\int\frac{\sin\left( x + b \right)\cos\left( x + a \right) - \sin\left( x + a \right)\cos\left( x + b \right)}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]
\[ = \frac{1}{\sin\left( b - a \right)}\left[ \int\frac{\sin\left( x + b \right)}{\cos\left( x + b \right)}dx - \int\frac{\sin\left( x + a \right)}{\cos\left( x + a \right)}dx \right]\]
\[ = \frac{1}{\sin\left( b - a \right)}\left[ \int\tan\left( x + b \right)dx - \int\tan\left( x + a \right)dx \right]\]
\[ = \frac{1}{\sin\left( b - a \right)}\left[ \log\left( \sec\left( x + b \right) \right) - \log\left( \sec\left( x + a \right) \right) \right] + c\]
\[ = \frac{1}{\sin\left( b - a \right)}\left[ \log\left( \frac{\sec\left( x + b \right)}{\sec\left( x + a \right)} \right) \right] + c\]

 Hence , \[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx = \frac{1}{\sin\left( b - a \right)}\left[ \log\left( \frac{\sec\left( x + b \right)}{\sec\left( x + a \right)} \right) \right] + c\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.08 | Q 28 | पृष्ठ ४८

संबंधित प्रश्‍न

Evaluate : `int_0^3dx/(9+x^2)`


Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int e^{2x} \text{ sin x cos x dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×