Advertisements
Advertisements
प्रश्न
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
उत्तर
\[\int\left( \frac{x^3 - x^2 + x - 1}{x - 1} \right) dx\]
\[ = \int\left( \frac{x^2 \left( x - 1 \right) + 1\left( x - 1 \right)}{\left( x - 1 \right)} \right)dx\]
\[ = \int\frac{\left( x^2 + 1 \right) \left( x - 1 \right)}{\left( x - 1 \right)}dx\]
\[ = \int\left( x^2 + 1 \right) dx\]
\[ = \frac{x^3}{3} + x + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`