मराठी

∫ X 3 − 3 X X 4 + 2 X 2 − 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]
बेरीज

उत्तर

\[I = \int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]
\[= \int\frac{x( x^2 - 3)}{x^4 + 2 x^2 - 4}dx\]

Let 

\[x^2 = t\] , or , 
\[2xdx = dt\]

\[\Rightarrow I = \frac{1}{2}\int\frac{(t - 3)}{t^2 + 2t - 4}dt\]
\[ = \frac{1}{4}\int\frac{2t - 6}{t^2 + 2t - 4}dt\]
\[ = \frac{1}{4}\int\frac{2t + 2 - 8}{t^2 + 2t - 4}dt\]
\[ = \frac{1}{4}\int\left( \frac{2t + 2}{t^2 + 2t - 4} - \frac{8}{t^2 + 2t - 4} \right)dt\]
\[ = \frac{1}{4}\left( \int\frac{2t + 2}{t^2 + 2t - 4}dt - \int\frac{8}{t^2 + 2t - 4}dt \right)\]

\[\Rightarrow I = \frac{1}{4}\left( I_1 + I_2 \right) . . . \left( i \right)\]

Now,

\[I_1 = \int\frac{2t + 2}{t^2 + 2t - 4} dt\]
\[t^2 + 2t - 4 = u\]

\[or, \left( 2t + 2 \right)dt = du\]
\[ \Rightarrow I_1 = \int\frac{1}{u} du = \text{ ln }\left| u \right| + c_1 \]
\[ \Rightarrow I_1 = \text{ ln }\left| t^2 + 2t - 4 \right| + c_1 \]
\[ \therefore I_1 = \text{ ln }\left| x^4 + 2 x^2 - 4 \right| + c_1\]

Now,

\[I_2 = \int\frac{- 8}{(t + 1 )^2 - 5}dt\]
\[ \Rightarrow I_2 = \int\frac{8}{(\sqrt{5} )^2 - (t + 1 )^2}dt\]
\[ \therefore I_2 = \frac{8}{2\sqrt{5}}\ln\left| \frac{\sqrt{5} + x^2 + 1}{\sqrt{5} - x^2 - 1} \right| + c_2\]

\[\text{ So, from }\left( i \right), \text{ we get}\]
\[I = \frac{1}{4}\left[ \text{ ln}\left| x^4 + 2 x^2 - 4 \right| + \frac{4}{\sqrt{5}}\text{ ln} \left| \frac{\sqrt{5} + x^2 + 1}{\sqrt{5} - x^2 - 1} \right| \right] + C\]
\[ \therefore I = \frac{1}{4}\text{ ln}\left| x^4 + 2 x^2 - 4 \right| + \frac{1}{\sqrt{5}}\text{ ln }\left| \frac{\sqrt{5} + x^2 + 1}{\sqrt{5} - x^2 - 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.19 | Q 17 | पृष्ठ १०४

संबंधित प्रश्‍न

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int e^{2x} \text{ sin x cos x dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×