मराठी

∫ X 3 X 4 + X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
बेरीज

उत्तर

\[I = \int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[ = \int\frac{x^2 \cdot x}{\left( x^2 \right)^2 + x^2 + 1}dx\]
\[\text{ Let x }^2 = \text{ t or 2xdx } = dt\]
\[ \Rightarrow I = \frac{1}{2}\int\frac{t}{t^2 + t + 1}dt\]
\[ = \frac{1}{4}\int\frac{2t}{t^2 + t + 1}dt\]
\[ = \frac{1}{4}\int\frac{2t + 1 - 1}{t^2 + t + 1}dt\]

\[= \frac{1}{4}\int\left[ \frac{\left( 2t + 1 \right)}{\left( t^2 + t + 1 \right)} - \frac{1}{\left( t^2 + t + 1 \right)} \right]dt\]
\[ = \frac{1}{4}\left[ \text{ log}\left| t^2 + t + 1 \right| - \int\frac{1}{\left( t^2 + t + \frac{1}{4} + \frac{3}{4} \right)}dt \right]\]
\[ = \frac{1}{4}\left[ \text{ log }\left| t^2 + t + 1 \right| - \int\frac{1}{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dt \right]\]
\[ = \frac{1}{4}\left[ \text{ log}\left| t^2 + t + 1 \right| - \frac{2}{\sqrt{3}}\tan\frac{\left( t + \frac{1}{2} \right)}{\left( \frac{\sqrt{3}}{2} \right)} \right] + c\]
\[ = \frac{1}{4}\left[ \text{ log }\left| t^2 + t + 1 \right| - \frac{2}{\sqrt{3}}\tan\left( \frac{2t + 1}{\sqrt{3}} \right) \right] + c\]

\[= \frac{1}{4}\left[ \text{ log }\left| x^4 + x^2 + 1 \right| - \frac{2}{\sqrt{3}}\tan\left( \frac{2 x^2 + 1}{\sqrt{3}} \right) \right] + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.19 | Q 16 | पृष्ठ १०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int x^3 \cos x^4 dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×