मराठी

∫ 5 Cos X + 6 2 Cos X + Sin X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\left( \frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \right)dx\]
\[\text{ and  let 5 cos x + 6 }= A \left( 2 \ cosx + \sin x + 3 \right) + B\left( - 2 \sin x + \cos x \right) + C . . . . (1) \]
\[ \Rightarrow 5 \cos x + 6 = \left( A - 2B \right) \sin x + \left( 2A + B \right) \cos x + 3A + C\]

Comparing coefficients of like terms

\[A - 2B = 0 . . . \left( 2 \right)\]
\[2A + B = 5 . . . (3)\]
\[3A + C = 6 . . . (4)\]

Multiplying eq (3) by 2 and then adding to eq (2)

4A + 2B + A – 2B = 10

\[\Rightarrow\]A = 2

Putting value of A in eq (2) and eq (4) we get,
B = 1& C = 0

\[\text{ By putting the values of A, B and C in eq (1) we get ,} \]
\[ \therefore I = \int\left[ \frac{2 \left( 2 \cos x + \sin x + 3 \right) + \left( - 2 \sin x + \cos x \right)}{\left( 2 \cos x + \sin x + 3 \right)} \right]dx\]
\[ = 2\int dx + \int \left( \frac{- 2 \sin x + \cos x}{2 \cos x + \sin x + 3} \right)dx\]
\[\text{ Putting 2 cos x + sin x + 3 = t }\]
\[ \Rightarrow \left( - 2 \sin x + \cos x \right)dx = dt\]
\[ \therefore I = 2\int dx + \int\frac{1}{t}dt\]
\[ = 2x + \text{ ln }\left| 2 \cos x + \sin x + 3 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.24 | Q 5 | पृष्ठ १२२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x^2 \text{ cos x dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×