मराठी

If ∫ 1 5 + 4 Sin X D X = a Tan − 1 ( B Tan X 2 + 4 3 ) + C , Then (A) a = 2 3 , B = 5 3 (B) a = 1 3 , B = 2 3 (C) a = − 2 3 , B = 5 3 (D) a = 1 3 , B = − 5 3 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then

पर्याय

  •  A =\[\frac{2}{3}\], B =\[\frac{5}{3}\]

  •  A =\[\frac{1}{3}\], B = \[\frac{2}{3}\]

  •  A =\[- \frac{2}{3}\], B =\[\frac{5}{3}\]

  • A =\[\frac{1}{3}\], B =\[- \frac{5}{3}\]

MCQ

उत्तर

A =\[\frac{2}{3}\] , B =\[\frac{5}{3}\]

\[\int\frac{1}{5 + 4 \sin x}dx =\text{ A  }\tan^{- 1} \left( \text{ B} \tan \frac{x}{2} + \frac{4}{3} \right) + C . . . . (1)\]
\[\text{Considering the LHS of eq} \text{ (1)}\]
\[\text{ Putting  sin x }= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow \int\frac{1}{5 + \frac{8 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ \Rightarrow \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5 \left( 1 + \tan^2 \frac{x}{2} \right) + 8 \tan \frac{x}{2}}\text{ dx }\]
\[ \Rightarrow \int\frac{\sec^2 \frac{x}{2}}{5 \tan^2 \frac{x}{2} + 8 \tan \frac{x}{2} + 5}\text{  dx }. . . (2) \]
\[\text{ Let tan }\frac{x}{2} = t\]
\[ \Rightarrow \sec^2 \frac{x}{2} \times \frac{1}{2} \text{ dx }= dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)\text{  dx }= 2dt\]
\[ \therefore \text{ Putting  tan} \frac{x}{2} = \text{ t  and }\sec^2 \left( \frac{x}{2} \right) dx = \text{ 2dt we get, }\]
\[\int\frac{2dt}{5 t^2 + 8t + 5}\]
\[ \Rightarrow \frac{2}{5}\int\frac{dt}{t^2 + \frac{8}{5}t + 1}\]
\[ \Rightarrow \frac{2}{5}\int\frac{dt}{t^2 + \frac{8}{5}t + \left( \frac{4}{5} \right)^2 - \left( \frac{4}{5} \right)^2 + 1}\]
\[ \Rightarrow \frac{2}{5}\int\frac{dt}{\left( t + \frac{4}{5} \right)^2 + 1 - \frac{16}{25}}\]
\[ \Rightarrow \frac{2}{5}\int\frac{dt}{\left( t + \frac{4}{5} \right)^2 + \left( \frac{3}{5} \right)^2}\]
\[ \Rightarrow \frac{2}{5} \times \frac{5}{3} \tan^{- 1} \left( \frac{t + \frac{4}{5}}{\frac{3}{5}} \right) + C\]
\[ \Rightarrow \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5t + 4}{3} \right) + C\]
\[ \Rightarrow \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5}{3} \tan \frac{x}{2} + \frac{4}{3} \right) + C \left( \because t = \text{ tan} \frac{x}{2} \right) . . . (3)\]

\[\text{ Comparing eq (3) with the RHS of eq (1) we get ,} \]
\[ \therefore A = \frac{2}{3}, B = \frac{5}{3}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २००]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 4 | पृष्ठ २००

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

`∫     cos ^4  2x   dx `


\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int \cot^5 x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×