Advertisements
Advertisements
प्रश्न
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
बेरीज
उत्तर
\[\text{We have}, \]
\[I = \int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\text{ Let, 1 - x = t}^2 \]
\[\text{Differentiating both sides we get}\]
\[ - \text{ dx = 2t dt}\]
\[\text{Now, integration becomes}, \]
\[I = - \int\frac{\left( 1 - t^2 \right)^2}{t} 2tdt\]
\[ = - 2\int \left( 1 - t^2 \right)^2 dt\]
\[ = - 2\int\left( 1 - 2 t^2 + t^4 \right) dt\]
\[ = - 2\left[ t - \frac{2 t^3}{3} + \frac{t^5}{5} \right] + C\]
\[ = \frac{- 2}{15}t\left[ 3 t^4 - 10 t^2 + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 \left( 1 - x \right)^2 - 10\left( 1 - x \right) + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3\left( 1 - 2x + x^2 \right) - 10\left( 1 - x \right) + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 x^2 - 6x + 3 - 10 + 10x + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 x^2 + 4x + 8 \right] + C\]
\[I = \int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\text{ Let, 1 - x = t}^2 \]
\[\text{Differentiating both sides we get}\]
\[ - \text{ dx = 2t dt}\]
\[\text{Now, integration becomes}, \]
\[I = - \int\frac{\left( 1 - t^2 \right)^2}{t} 2tdt\]
\[ = - 2\int \left( 1 - t^2 \right)^2 dt\]
\[ = - 2\int\left( 1 - 2 t^2 + t^4 \right) dt\]
\[ = - 2\left[ t - \frac{2 t^3}{3} + \frac{t^5}{5} \right] + C\]
\[ = \frac{- 2}{15}t\left[ 3 t^4 - 10 t^2 + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 \left( 1 - x \right)^2 - 10\left( 1 - x \right) + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3\left( 1 - 2x + x^2 \right) - 10\left( 1 - x \right) + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 x^2 - 6x + 3 - 10 + 10x + 15 \right] + C\]
\[ = \frac{- 2}{15}\sqrt{1 - x}\left[ 3 x^2 + 4x + 8 \right] + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int \cos^5 x\ dx\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]