मराठी

∫ 2 X + 5 X 2 − X − 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
बेरीज

उत्तर

\[\int\frac{\left( 2x + 5 \right) dx}{x^2 - x - 2}\]
\[2x + 5 = A\frac{d}{dx}\left( x^2 - x - 2 \right) + B\]
\[2x + 5 = A \left( 2x - 1 \right) + B\]
\[2x + 5 = \left( 2 A \right) x + B - A\]

Comparing the Coefficients of like powers of x

\[2 A = 2\]
\[A = 1\]
\[B - A = 5\]
\[B - 1 = 5\]
\[B = 6\]

\[\therefore 2x + 5 = 1 \cdot \left( 2x - 1 \right) + 6\]
\[ \therefore \int\left( \frac{2x + 5}{x^2 - x - 2} \right)dx\]
\[ \Rightarrow \int\left( \frac{\left( 2x - 1 \right) + 6}{x^2 - x - 2} \right)dx\]
\[ \Rightarrow \int\left( \frac{2x - 1}{x^2 - x - 2} \right)dx + 6\int\frac{dx}{x^2 - x - 2}\]
\[ = I_1 + 6 I_2 \left( \text{ say }\right) . . . \left( 1 \right)\]
\[\text{ where }\]
\[ I_1 = \int\left( \frac{2x - 1}{x^2 - x - 2} \right)\text{ dx }I_2 = \int\frac{dx}{x^2 - x - 2}\]
\[ I_1 = \int\left( \frac{2x - 1}{x^2 - x - 2} \right)dx\]
\[\text{ let x}^2 - x - 2 = t\]
\[ \Rightarrow \left( 2x - 1 \right) dx = dt\]
\[ I_1 = \int\frac{dt}{t}\]
\[ I_1 = \text{ log }\left( t \right)\]
\[ I_1 = \text{ log }\left| x^2 - x - 2 \right| + C_1 . . . \left( 2 \right)\]
\[ I_2 = \int\frac{dx}{x^2 - x - 2}\]
\[ I_2 = \int\frac{dx}{x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 2}\]
\[ I_2 = \int\frac{dx}{\left( x - \frac{1}{2} \right)^2 - \frac{1}{4} - 2}\]
\[ I_2 = \int\frac{dx}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{2} \right)^2}\]
\[ I_2 = \frac{1}{2 \times \frac{3}{2}} \text{ log }\left| \frac{x - \frac{1}{2} - \frac{3}{2}}{x - \frac{1}{2} + \frac{3}{2}} \right|\]
\[ I_2 = \frac{1}{3} \text{ log} \left| \frac{x - 2}{x + 1} \right| + C_2 . . . \left( 3 \right)\]
\[\int\frac{\left( 2x + 5 \right) dx}{x^2 - x - 2}\]
\[ = \text{ log} \left| x^2 - x - 2 \right| + \frac{6}{3} \text{ log} \left| \frac{x - 2}{x + 1} \right| + C_1 + C_2 \]
\[ = \text{ log }\left| x^2 - x - 2 \right| + 2 \text{ log }\left| \frac{x - 2}{x + 1} \right| + C \left( \text{ Where C }= C_1 + C_2 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.19 | Q 8 | पृष्ठ १०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫   tan   x   sec^4  x   dx  `


` ∫  sec^6   x  tan    x   dx `

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \tan^3 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×