Advertisements
Advertisements
प्रश्न
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
बेरीज
उत्तर
\[\int\frac{e^x dx}{\sqrt{16 - \left( e^x \right)^2}}\]
\[\text{ let } e^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[Now, \int\frac{e^x dx}{\sqrt{16 - \left( e^x \right)^2}}\]
\[ = \int\frac{dt}{\sqrt{16 - t^2}}\]
\[ = \int\frac{dt}{\sqrt{4^2 - t^2}}\]
\[ = \sin^{- 1} \left( \frac{t}{4} \right) + C\]
\[ = \sin^{- 1} \left( \frac{e^x}{4} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int x^2 \text{ cos x dx }\]
` ∫ x tan ^2 x dx
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int \sec^4 x\ dx\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]