Advertisements
Advertisements
प्रश्न
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
बेरीज
उत्तर
\[\int\left[ \frac{2x - 1}{\left( x - 1 \right)^2} \right]dx\]
\[\text{Let x - 1 }= t\]
\[ \Rightarrow x = t + 1\]
\[ \Rightarrow 1 = \frac{dt}{dx}\]
\[Now, \int\left[ \frac{2x - 1}{\left( x - 1 \right)^2} \right]dx\]
\[ = \int\left[ \frac{2\left( t + 1 \right) - t}{t^2} \right]\text{ dt }\]
\[ = \int\left( \frac{2t + 1}{t^2} \right)\text{ dt }\]
\[ = 2\int\frac{dt}{t} + \int t^{- 2} \text{ dt }\]
\[ = \text{ 2 log }\left| t \right| + \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ =\text{ 2 log }\left( x - 1 \right) - \frac{1}{x - 1} + C\]
\[\text{Let x - 1 }= t\]
\[ \Rightarrow x = t + 1\]
\[ \Rightarrow 1 = \frac{dt}{dx}\]
\[Now, \int\left[ \frac{2x - 1}{\left( x - 1 \right)^2} \right]dx\]
\[ = \int\left[ \frac{2\left( t + 1 \right) - t}{t^2} \right]\text{ dt }\]
\[ = \int\left( \frac{2t + 1}{t^2} \right)\text{ dt }\]
\[ = 2\int\frac{dt}{t} + \int t^{- 2} \text{ dt }\]
\[ = \text{ 2 log }\left| t \right| + \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ =\text{ 2 log }\left( x - 1 \right) - \frac{1}{x - 1} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{1}{1 - \cos x} dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
Find: `int (3x +5)/(x^2+3x-18)dx.`