मराठी

∫ 2 X − 1 ( X − 1 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
बेरीज

उत्तर

\[\int\left[ \frac{2x - 1}{\left( x - 1 \right)^2} \right]dx\]
\[\text{Let x - 1 }= t\]
\[ \Rightarrow x = t + 1\]
\[ \Rightarrow 1 = \frac{dt}{dx}\]
\[Now, \int\left[ \frac{2x - 1}{\left( x - 1 \right)^2} \right]dx\]
\[ = \int\left[ \frac{2\left( t + 1 \right) - t}{t^2} \right]\text{ dt  }\]
\[ = \int\left( \frac{2t + 1}{t^2} \right)\text{ dt  }\]
\[ = 2\int\frac{dt}{t} + \int t^{- 2} \text{ dt }\]
\[ = \text{ 2  log  }\left| t \right| + \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ =\text{  2  log  }\left( x - 1 \right) - \frac{1}{x - 1} + C\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.10 | Q 4 | पृष्ठ ६५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×