मराठी

∫ 1 ( Sin X − 2 Cos X ) ( 2 Sin X + Cos X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int \frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)}dx\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\sec^2 x}{\left( \frac{\sin x - 2 \cos x}{\cos x} \right) \times \left( \frac{2 \sin x + \cos x}{\cos x} \right)}dx\]
\[ = \int \frac{\sec^2 x}{\left( \tan x - 2 \right) \left( 2 \tan x + 1 \right)}dx\]
\[\text{ Let tan x} = t\]
\[ \Rightarrow \sec^2 x \text{ dx } = dt\]
\[ \therefore I = \int \frac{dt}{\left( t - 2 \right) \left( 2t + 1 \right)}\]


\[ = \int \frac{dt}{2 t^2 + t - 4t - 2}\]
\[ = \int \frac{dt}{2 t^2 - 3t - 2}\]
\[ = \frac{1}{2}\int \frac{dt}{t^2 - \frac{3}{2}t - 1}\]
\[ = \frac{1}{2}\int \frac{dt}{t^2 - \frac{3}{2}t + \left( \frac{3}{4} \right)^2 - \left( \frac{3}{4} \right)^2 - 1}\]
\[ = \frac{1}{2}\int \frac{dt}{\left( t - \frac{3}{4} \right)^2 - \frac{9}{16} - 1}\]
\[ = \frac{1}{2}\int \frac{dt}{\left( t - \frac{3}{4} \right)^2 - \left( \frac{5}{4} \right)^2}\]
\[ = \frac{1}{2} \times \frac{1}{2 \times \frac{5}{4}} \text{ log } \left| \frac{t - \frac{3}{4} - \frac{5}{4}}{t - \frac{3}{4} + \frac{5}{4}} \right| + C\]
\[ = \frac{1}{5} \text{ ln } \left| \frac{t - 2}{t + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{5}\text{ ln } \left| \frac{\left( t - 2 \right)^2}{2t + 1} \right| + C\]
\[ = \frac{1}{5}\text{ln } \left| \frac{t - 2}{2t + 1} \right| + \frac{1}{5} \ln \left( 2 \right) + C\]
\[ = \frac{1}{5} \text{ ln } \left| \frac{t - 2}{2t + 1} \right| + \text{ C where C} = C + \frac{1}{5}\ln \left( 2 \right)\]
\[ = \frac{1}{5} \text{ ln } \left| \frac{\tan x - 2}{2 \tan x + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.22 [पृष्ठ ११४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.22 | Q 7 | पृष्ठ ११४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

` ∫      tan^5    x   dx `


` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×