Advertisements
Advertisements
प्रश्न
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
बेरीज
उत्तर
\[\text{Let I }= \int\frac{\ secx \ tanx}{3 \sec x + 5}dx\]
\[\text{Putting }\sec x = t \]
\[ \Rightarrow \frac{dt}{dx} = \sec x \tan x\]
\[ \Rightarrow dt = \text{sec x tan x dx}\]
\[ \therefore I = \int\frac{dt}{3t + 5}\]
\[ = \frac{1}{3} \text{ln }\left| 3t + 5 \right| + C\]
\[ = \frac{1}{3} \text{ln} \left| 3 \sec x + 5 \right| + C \left[ \because t = \sec x \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\sin^2 x}{1 + \cos x} \text{dx} \]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int \cot^6 x \text{ dx }\]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int \log_{10} x\ dx\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
Find: `int (3x +5)/(x^2+3x-18)dx.`