Advertisements
Advertisements
प्रश्न
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
बेरीज
उत्तर
\[\text{Let I} = \int\frac{e^{3x}}{e^{3x} + 1}dx\]
\[\text{Putting }e^{3x} + 1 = t \]
\[ \Rightarrow 3 e^{3x} = \frac{dt}{dx}\]
\[ \Rightarrow dx = \frac{dt}{3 e^{3x}}\]
\[ \therefore I = \int\frac{e^{3x}}{3t\left( e^{3x} \right)}dt\]
\[ = \frac{1}{3}\int\frac{1}{t}dt\]
\[ = \frac{\text{ln }\left| t \right|}{3} + C\]
\[ = \frac{\text{ln} \left| e^{3x} + 1 \right|}{3} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int\frac{a}{b + c e^x} dx\]
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]