Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\left( \frac{x^2 + x - 1}{x^2 + x - 6} \right)dx\]
\[\frac{x^2 + x - 1}{x^2 + x - 6} = 1 + \frac{5}{x^2 + x - 6}\]
\[ \int\left( \frac{x^2 + x - 1}{x^2 + x - 6} \right)dx\]
\[ = ∫ dx + 5\int\frac{dx}{x^2 + x - 6}\]
\[ = ∫ dx + 5\int\frac{dx}{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 6}\]
\[ = ∫ dx + 5\int\frac{dx}{\left( x + \frac{1}{2} \right)^2 - \frac{1}{4} - 6}\]
\[ = ∫ dx + 5\int\frac{dx}{\left( x + \frac{1}{2} \right)^2 - \left( \frac{5}{2} \right)^2}\]
\[ = x + 5 \times \frac{1}{2 \times \frac{5}{2}} \text{ log } \left| \frac{x + \frac{1}{2} - \frac{5}{2}}{x + \frac{1}{2} + \frac{5}{2}} \right| + C\]
\[ = x + \text{ log } \left| \frac{x - 2}{x + 3} \right| + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]