मराठी

∫ √ 1 − √ X 1 + √ X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
बेरीज

उत्तर

\[\text{We have}, \]

\[I = \int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} dx\]

\[\text{ Putting }\sqrt{x} = \cos\theta\]

\[ \Rightarrow x = \cos^2 \theta\]

\[ \Rightarrow dx = - 2 \cos\theta \sin\text{ θ  dθ }\]

\[ \Rightarrow dx = - \text{ sin}\left( 2\theta \right) \text{  dθ }\]

\[ \therefore I = \int\sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}} \left( - \sin 2\theta \right) d\theta\]

\[ = \int\sqrt{\frac{2 \sin^2 \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}} \left( - 2 \sin\theta \cos\theta \right) d\theta\]

\[ = \int\left( \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} \right) \left( - 2 \times 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\cos\theta \right) \text{   dθ }\]

\[ = - 4\int \sin^2 \frac{\theta}{2} \times \cos\text{ θ  dθ }\]

\[ = - 4\int\left( \frac{1 - \cos\theta}{2} \right) \cos\text{ θ  dθ }\]

\[ = - 2\int\left( \cos\theta - \cos^2 \theta \right) d\theta\]

\[ = - 2\int\left\{ \cos\theta - \left( \frac{1 + \cos 2\theta}{2} \right) \right\}d\theta\]

\[ = - 2\int\cos \text{ θ  dθ } + \int\left( 1 + \cos 2\theta \right) d\theta\]

\[ = - 2\sin \theta + \theta + \frac{\sin 2\theta}{2} + C\]

\[ = - 2 \sqrt{1 - \cos^2 \theta} + \theta + \frac{2 \sin\theta \cos\theta}{2} + C\]

\[ = - 2 \sqrt{1 - \cos^2 \theta} + \theta + \sin\theta \cos\theta + C\]

\[ = - 2\sqrt{1 - x} + \cos^{- 1} \sqrt{x} + \sqrt{1 - x}\sqrt{x} + C\]

\[ = - 2\sqrt{1 - x} + \cos^{- 1} \sqrt{x} + \sqrt{x}\sqrt{1 - x} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 127 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫      tan^5    x   dx `


\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×