English

∫ √ 1 − √ X 1 + √ X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
Sum

Solution

\[\text{We have}, \]

\[I = \int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} dx\]

\[\text{ Putting }\sqrt{x} = \cos\theta\]

\[ \Rightarrow x = \cos^2 \theta\]

\[ \Rightarrow dx = - 2 \cos\theta \sin\text{ θ  dθ }\]

\[ \Rightarrow dx = - \text{ sin}\left( 2\theta \right) \text{  dθ }\]

\[ \therefore I = \int\sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}} \left( - \sin 2\theta \right) d\theta\]

\[ = \int\sqrt{\frac{2 \sin^2 \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}} \left( - 2 \sin\theta \cos\theta \right) d\theta\]

\[ = \int\left( \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} \right) \left( - 2 \times 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\cos\theta \right) \text{   dθ }\]

\[ = - 4\int \sin^2 \frac{\theta}{2} \times \cos\text{ θ  dθ }\]

\[ = - 4\int\left( \frac{1 - \cos\theta}{2} \right) \cos\text{ θ  dθ }\]

\[ = - 2\int\left( \cos\theta - \cos^2 \theta \right) d\theta\]

\[ = - 2\int\left\{ \cos\theta - \left( \frac{1 + \cos 2\theta}{2} \right) \right\}d\theta\]

\[ = - 2\int\cos \text{ θ  dθ } + \int\left( 1 + \cos 2\theta \right) d\theta\]

\[ = - 2\sin \theta + \theta + \frac{\sin 2\theta}{2} + C\]

\[ = - 2 \sqrt{1 - \cos^2 \theta} + \theta + \frac{2 \sin\theta \cos\theta}{2} + C\]

\[ = - 2 \sqrt{1 - \cos^2 \theta} + \theta + \sin\theta \cos\theta + C\]

\[ = - 2\sqrt{1 - x} + \cos^{- 1} \sqrt{x} + \sqrt{1 - x}\sqrt{x} + C\]

\[ = - 2\sqrt{1 - x} + \cos^{- 1} \sqrt{x} + \sqrt{x}\sqrt{1 - x} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 127 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×