English

∫ X ( Sec 2 X − 1 Sec 2 X + 1 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
Sum

Solution

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right)dx\]
\[ = \int x \left( \frac{\frac{1}{\cos 2x} - 1}{\frac{1}{\cos 2x} + 1} \right)dx\]
\[ = \int x \left( \frac{1 - \cos 2x}{1 + \cos 2x} \right)dx\]
\[ = \int x \left( \frac{2 \sin^2 x}{2 \cos^2 x} \right)dx \left[ \because \left( 1 - \cos 2x \right) = 2 \sin^2 x and \left( 1 + \cos 2x \right) = 2 \cos^2 x \right]\]
\[ = \int x . \tan^2 \text{ x dx  }\]
\[ = \int x . \left( \sec^2 x - 1 \right) dx\]
\[ = \int x_I . \sec^2_{II}   \text{ x   dx } - \int \text{ x dx }\]
\[ = x\int \sec^2\text{  x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\sec^2  \text{ x  dx }\right\}dx - \frac{x^2}{2} + C_1 \]
\[ = x \tan x - \int1 . \text{ tan x dx } - \frac{x^2}{2} + C_1 \]
\[ = x \tan x - \text{ log  }\left| \sec x \right| - \frac{x^2}{2} + C_2 + C_1 \]
\[ = x \tan x - \text{ log }\left| \sec x \right| - \frac{x^2}{2} + C \left( \text{ where C} = C_1 + C_2 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 33 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×