English

∫ x 5 √ 1 + x 3 dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
Sum

Solution

\[\text{We have}, \]
\[I = \int\frac{x^5 dx}{\sqrt{1 + x^3}}\]
\[ = \int\frac{x^3 x^2 \text{ dx }}{\sqrt{1 + x^3}}\]
\[\text{ Putting x}^3 = t \]
\[ \Rightarrow 3 x^2 \text{ dx }= dt\]
\[ \Rightarrow x^2 \text{ dx }= \frac{dt}{3}\]
\[ \therefore I = \frac{1}{3}\int\frac{t \text{ dt}}{\sqrt{1 + t}}\]
\[ = \frac{1}{3}\int\left( \frac{1 + t - 1}{\sqrt{1 + t}} \right) dt\]
\[ = \frac{1}{3}\int\left( \sqrt{1 + t} - \frac{1}{\sqrt{1 + t}} \right) dt\]
\[ = \frac{1}{3} \left[ \frac{\left( 1 + t \right)^\frac{3}{2}}{\frac{3}{2}} - \frac{\left( 1 + t \right)^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{2}{9} \left( 1 + t \right)^\frac{3}{2} - \frac{2}{3} \left( 1 + t \right)^\frac{1}{2} + C\]
\[ = \frac{2}{9} \left( 1 + x^3 \right)^\frac{3}{2} - \frac{2}{3} \left( 1 + x^3 \right)^\frac{1}{2} + C\]
\[ = \frac{2}{9} \left( 1 + x^3 \right)^\frac{1}{2} \left( 1 + x^3 - 3 \right) + C\]
\[ = \frac{2}{9} \sqrt{1 + x^3} \left( x^3 - 2 \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 103 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×