Advertisements
Advertisements
Question
\[\int \cos^7 x \text{ dx } \]
Sum
Solution
∫ cos7 x dx
= ∫ cos6 x . cos x dx
= ∫ (cos2 x)3 cos x dx
= ∫ (1 – sin2 x)3 . cos x dx
Let sin x = t
⇒ cos x dx = dt
Now, ∫ (1 – sin2 x)3.cos x dx
= ∫ (1 – t2)3 dt
= ∫ (1 – t6 – 3t2 + 3t4) dt
\[= \left[ t - \frac{t^7}{7} - \frac{3 t^3}{3} + \frac{3 t^5}{5} \right] + C\]
\[ = \sin x - \frac{1}{7} \sin^7 x - \sin^3 x + \frac{3}{5} \sin^5 x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int \cos^2 \text{nx dx}\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int x \cos^3 x\ dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int \cot^5 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int \sec^6 x\ dx\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]