Advertisements
Advertisements
Question
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
Options
- \[\frac{1}{3} \tan^2 x + C\]
- \[\frac{1}{2} \tan^2 x + C\]
- \[\frac{1}{3} \tan^3 x + C\]
none of these
MCQ
Solution
\[\frac{1}{3} \tan^3 x + C\]
\[\text{Let }I = \int\frac{\sin^2 x dx}{\cos^4 x}\]
\[ = \int\frac{\sin^2 x}{\cos^2 x} \times \frac{1}{\cos^2 x}dx\]
\[ = \int \tan^2 x \cdot \sec^2 x dx\]
\[\text{Let }\tan x = t\]
\[ \Rightarrow \sec^2 x dx = dt\]
\[ \therefore I = \int t^2 \cdot dt\]
\[ = \frac{t^3}{3} + C\]
\[ = \frac{\tan^3 x}{3} + C ..........\left( \because t = \tan x \right)\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{1}{x (3 + \log x)} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]