Advertisements
Advertisements
Question
\[\int e^x \left( \cos x - \sin x \right) dx\]
Sum
Solution
\[\text{ Let I } = \int e^x \left( \cos x - \sin x \right) dx \]
\[\text{ let e}^x \cos x = t \]
\[\text{ Diff both sides w . r . t x}\]
\[ e^x \cdot \cos x + e^x \left( - \sin x \right) = \frac{dt}{dx} \text{ Put e}^x f\left( x \right) = t\]
\[ \Rightarrow e^x \left( \cos x - \sin x \right) dx = dt\]
\[ \therefore \int e^x \left( \cos x - \sin x \right) dx = \int dt\]
\[ \Rightarrow I = t + C\]
\[ = e^x \cos x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
` ∫ tan^3 x sec^2 x dx `
` ∫ tan^5 x sec ^4 x dx `
\[\int \cot^5 x \text{ dx }\]
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int \tan^3 x\ \sec^4 x\ dx\]