English

∫ √ 16 + ( Log X ) 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
Sum

Solution

\[\text{ Let I }= \int\sqrt{\frac{16 + \left( \log x \right)^2}{x}}\text{ dx}\]
\[\text{ Putting  log x }= t\]
\[ \Rightarrow \frac{1}{x} \text{ dx}= dt\]
\[ \therefore I = \int\sqrt{16 + t^2}dt\]
\[ = \int\sqrt{4^2 + t^2}dt\]
\[ = \frac{t}{2} \sqrt{4^2 + t^2} + \frac{4^2}{2} \text{ log} \left| t + \sqrt{4^2 + t^2} \right| + C\]
\[ = \frac{\log x}{2} \sqrt{16 + \left( \log x \right)^2} + 8 \text{ log }\left| \log x + \sqrt{16 + \left( \log x \right)^2} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.28 [Page 154]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.28 | Q 14 | Page 154

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \cos^5 x\ dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×