English

∫ 1 Cos ( X − a ) Cos ( X − B ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
Sum

Solution

\[\int\frac{1}{\text{ cos } \left( x - a \right) \cdot \text{ cos} \left( x - b \right)}dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\frac{\text{ sin }\left( a - b \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\frac{\text{ sin }\left[ \left( x - b \right) - \left( x - a \right) \right]}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\frac{\text{ sin }\left( x - b \right) \cdot \text{ cos}\left( x - a \right) - \text{ cos}\left( x - b \right) \cdot \text{ sin }\left( x - a \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)}\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\left[ \frac{\text{ sin }\left( x - b \right) \cdot \text{ cos}\left( x - a \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} - \frac{\text{ cos}\left( x - b \right) \cdot \text{ sin }\left( x - a \right)}{\text{ cos}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)} \right] dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\left[ \text{ tan }\left( x - b \right) - \text{ tan }\left( x - a \right) \right] dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\int\text{ tan }\left( x - b \right) dx - \int\text{ tan } \left( x - a \right) dx\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\left[ \text{ ln }\left| \text{ sec }\left( x - b \right) \right| - \text{ ln } \left| \text{ sec }\left( x - a \right) \right| \right] + C\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\left[ \text{ ln }\left| \text{ cos }\left( x - a \right) \right| - \text{ ln }\left| \text{ cos}\left( x - b \right) \right| \right] + C\]
\[ = \frac{1}{\text{ sin }\left( a - b \right)}\left[ \text{ ln }\left| \frac{\text{ cos}\left( x - a \right)}{\text{ cos}\left( x - b \right)} \right| \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 25 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

`∫     cos ^4  2x   dx `


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x^2 \sin^2 x\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \tan^5 x\ dx\]

\[\int \cot^4 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×