English

If ∫ 1 ( X + 2 ) ( X 2 + 1 ) D X = a Log ∣ ∣ 1 + X 2 ∣ ∣ + B Tan − 1 X + 1 5 Log | X + 2 | + C , Then - Mathematics

Advertisements
Advertisements

Question

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then

Options

  • \[ a = - \frac{1}{10}, b = - \frac{2}{5}\]

  • \[a = \frac{1}{10}, b = - \frac{2}{5}\]

  • \[ a = - \frac{1}{10}, b = \frac{2}{5}\]

  • \[ a = \frac{1}{10}, b = \frac{2}{5}\]
MCQ

Solution

\[ a = - \frac{1}{10}, b = \frac{2}{5}\]

 

\[\text{Let }I = \int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx\]
We express,
\[\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow 1 = A\left( x^2 + 1 \right) + \left( Bx + C \right)\left( x + 2 \right)\]
On comparing the coefficients of `x^2, x` and constants, we get
\[0 = A + B\text{ and }0 = 2B + C\text{ and }1 = A + 2C\]
\[\text{or }A = \frac{1}{5}\text{ and }B = - \frac{1}{5}\text{ and }C = \frac{2}{5}\]
\[ \therefore I = \int\left( \frac{\frac{1}{5}}{x + 2} + \frac{- \frac{1}{5}x + \frac{2}{5}}{x^2 + 1} \right)dx\]
\[ = \frac{1}{5}\int\frac{1}{x + 2}dx - \frac{1}{5}\int\frac{x}{x^2 + 1}dx + \frac{2}{5}\int\frac{1}{x^2 + 1}dx\]
\[ = \frac{1}{5}\log\left| x + 2 \right| - \frac{1}{10}\log\left| x^2 + 1 \right| + \frac{2}{5} \tan^{- 1} x + C\]
\[\text{Since, }\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C\]
\[\text{Therefore, }a = - \frac{1}{10}\text{ and }b = \frac{2}{5}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 35 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^7 x  \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×