Advertisements
Advertisements
प्रश्न
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
विकल्प
\[ a = - \frac{1}{10}, b = - \frac{2}{5}\]
\[a = \frac{1}{10}, b = - \frac{2}{5}\]
\[ a = - \frac{1}{10}, b = \frac{2}{5}\]
- \[ a = \frac{1}{10}, b = \frac{2}{5}\]
उत्तर
\[ a = - \frac{1}{10}, b = \frac{2}{5}\]
\[\text{Let }I = \int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx\]
We express,
\[\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow 1 = A\left( x^2 + 1 \right) + \left( Bx + C \right)\left( x + 2 \right)\]
On comparing the coefficients of `x^2, x` and constants, we get
\[0 = A + B\text{ and }0 = 2B + C\text{ and }1 = A + 2C\]
\[\text{or }A = \frac{1}{5}\text{ and }B = - \frac{1}{5}\text{ and }C = \frac{2}{5}\]
\[ \therefore I = \int\left( \frac{\frac{1}{5}}{x + 2} + \frac{- \frac{1}{5}x + \frac{2}{5}}{x^2 + 1} \right)dx\]
\[ = \frac{1}{5}\int\frac{1}{x + 2}dx - \frac{1}{5}\int\frac{x}{x^2 + 1}dx + \frac{2}{5}\int\frac{1}{x^2 + 1}dx\]
\[ = \frac{1}{5}\log\left| x + 2 \right| - \frac{1}{10}\log\left| x^2 + 1 \right| + \frac{2}{5} \tan^{- 1} x + C\]
\[\text{Since, }\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C\]
\[\text{Therefore, }a = - \frac{1}{10}\text{ and }b = \frac{2}{5}\]
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]