हिंदी

If ∫ 1 ( X + 2 ) ( X 2 + 1 ) D X = a Log ∣ ∣ 1 + X 2 ∣ ∣ + B Tan − 1 X + 1 5 Log | X + 2 | + C , Then - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then

विकल्प

  • \[ a = - \frac{1}{10}, b = - \frac{2}{5}\]

  • \[a = \frac{1}{10}, b = - \frac{2}{5}\]

  • \[ a = - \frac{1}{10}, b = \frac{2}{5}\]

  • \[ a = \frac{1}{10}, b = \frac{2}{5}\]
MCQ

उत्तर

\[ a = - \frac{1}{10}, b = \frac{2}{5}\]

 

\[\text{Let }I = \int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx\]
We express,
\[\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow 1 = A\left( x^2 + 1 \right) + \left( Bx + C \right)\left( x + 2 \right)\]
On comparing the coefficients of `x^2, x` and constants, we get
\[0 = A + B\text{ and }0 = 2B + C\text{ and }1 = A + 2C\]
\[\text{or }A = \frac{1}{5}\text{ and }B = - \frac{1}{5}\text{ and }C = \frac{2}{5}\]
\[ \therefore I = \int\left( \frac{\frac{1}{5}}{x + 2} + \frac{- \frac{1}{5}x + \frac{2}{5}}{x^2 + 1} \right)dx\]
\[ = \frac{1}{5}\int\frac{1}{x + 2}dx - \frac{1}{5}\int\frac{x}{x^2 + 1}dx + \frac{2}{5}\int\frac{1}{x^2 + 1}dx\]
\[ = \frac{1}{5}\log\left| x + 2 \right| - \frac{1}{10}\log\left| x^2 + 1 \right| + \frac{2}{5} \tan^{- 1} x + C\]
\[\text{Since, }\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C\]
\[\text{Therefore, }a = - \frac{1}{10}\text{ and }b = \frac{2}{5}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 35 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int \tan^5 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×