हिंदी

∫ 2 X − 3 X 2 + 6 X + 13 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
योग

उत्तर

\[\int\frac{\left( 2x - 3 \right) dx}{x^2 + 6x + 13}\]
\[2x - 3 = A\frac{d}{dx}\left( x^2 + 6x + 13 \right) + B\]
\[2x - 3 = A \left( 2x + 6 \right) + B\]
\[2x - 3 = \left( 2 A \right) x + 6A + B\]

Comparing Coefficients of like powers of x

\[2A = 2\]
\[A = 1\]
\[6 A + B = - 3\]
\[6 + B = - 3\]
\[B = - 9\]
\[ \therefore 2x - 3 = 1 \left( 2x + 6 \right) - 9\]

\[\therefore \int\frac{\left( 2x - 3 \right)}{x^2 + 6x + 13}dx\]
\[ = \int\left( \frac{2x + 6 - 9}{x^2 + 6x + 13} \right)dx\]
` = ∫ (  {2x + 6+ 9}/{x^2 + 6x + 13} ) dx    - ∫  {9  dx }/ {x^2 + 6x + 13} `
\[ = \int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 13} - 9\int\frac{dx}{x^2 + 6x + 3^2 - 3^2 + 13}\]
\[ = \int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 13} - 9\int\frac{dx}{\left( x + 3 \right)^2 + 2^2}\]
\[ = \text{ log } \left| x^2 + 6x + 13 \right| - 9 \times \frac{1}{2} \text{ tan}^{- 1} \left( \frac{x + 3}{2} \right) + C\]
\[ = \text{ log }\left| x^2 + 6x + 13 \right| - \frac{9}{2} \text{ tan}^{- 1} \left( \frac{x + 3}{2} \right) + C\]

 

 

 

 

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.19 | Q 4 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

` ∫   cos  3x   cos  4x` dx  

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×