हिंदी

∫ X 2 + 3 X + 1 ( X + 1 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
योग

उत्तर

\[\int\left( \frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} \right) dx\]
\[\text{Let x + 1 }= t\]
\[ \Rightarrow x = t - 1\]
\[ \Rightarrow 1 = \frac{dt}{dx}\]
\[ \Rightarrow dx = dt\]
\[Now, \int\left( \frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} \right) dx\]
\[ = \int\left[ \frac{\left( t - 1 \right)^2 + 3\left( t - 1 \right) + 1}{t^2} \right]dt\]
\[ = \int\left( \frac{t^2 - 2t + 1 + 3t - 3 + 1}{t^2} \right)dt\]
\[ = \int\left( \frac{t^2 + t - 1}{t^2} \right)dt\]
\[ = \int\left( 1 + \frac{1}{t} - t^{- 2} \right) dt\]
\[ = t + \text{ log }\left| t \right| - \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ = t + \text{ log }\left| t \right| + \frac{1}{t} + C\]
\[ = x + 1 + \text{ log     }\left| x + 1 \right| + \frac{1}{x + 1} + C\]
\[\text{ Let 1 + C  }= C'\]
\[ = x + \text{ log }\left| x + 1 \right| + \frac{1}{x + 1} + C'\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.10 | Q 6 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int x \sec^2 2x\ dx\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×