हिंदी

∫ √ a + X X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\frac{a + x}{x}}dx\]
 
योग

उत्तर

\[\text{ Let I } = \int\sqrt{\frac{a + x}{x}}dx\]
\[ = \int\frac{\sqrt{\left( a + x \right) \left( a + x \right)}}{\sqrt{x \left( a + x \right)}}\]
\[ = \int\left( \frac{a + x}{\sqrt{x^2 + ax}} \right)dx\]
\[ = a\int\frac{1}{\sqrt{x^2 + ax}}\text{ dx} + \int\frac{x}{\sqrt{x^2 + ax}}\text{ dx}\]
\[ = a\int\frac{1}{\sqrt{x^2 + ax + \left( \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx} + \int\frac{x}{\sqrt{x^2 + ax}}\text{ dx}\]
\[ = a\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx}+ \frac{1}{2}\int\frac{2x}{\sqrt{x^2 + ax}}\text{ dx}\]
\[ = a\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx}+ \frac{1}{2}\int\left( \frac{2x + a - a}{\sqrt{x^2 + ax}} \right)\text{ dx}\]
\[ = a\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx } + \frac{1}{2}\int\frac{\left( 2x + a \right)}{\sqrt{x^2 + ax}}\text{ dx  }- \frac{a}{2}\int\frac{1}{\sqrt{x^2 + ax}}\text{ dx }\]
\[ = \frac{a}{2}\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}\text{ dx } + \frac{1}{2}\int\frac{\left( 2x + a \right)}{\sqrt{x^2 + ax}} \text{ dx }\]
\[\text{ Putting  x}^2 + ax = \text{ t in the Ist integral} \]
\[ \Rightarrow \left( 2x + a \right) dx = dt\]
\[ \therefore I = \frac{a}{2}\int\frac{1}{\sqrt{\left( x + \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2}}dx + \frac{1}{2}\int\frac{1}{\sqrt{t}}dt\]
\[ = \frac{a}{2} \text{ ln  }\left| x + \frac{a}{2} + \sqrt{x^2 + ax} \right| + \frac{1}{2} \times 2\sqrt{t} + C .................\left[ \because \int\frac{1}{\sqrt{x^2 - a^2}}dx = \text{ ln}\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]
\[ = \frac{a}{2} \text{ ln } \left| x + \frac{a}{2} + \sqrt{x^2 + ax} \right| + \sqrt{x^2 + ax} + C ..........\left[ \because t = x^2 + ax \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 74 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \tan^3 x\ dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×