Advertisements
Advertisements
प्रश्न
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
योग
उत्तर
\[\text{Let I} = \int\frac{\cos x}{2 + 3\sin x}dx\]
\[\text{Putting }\sin x = t \]
\[ \Rightarrow \cos x = \frac{dt}{dx}\]
\[ \Rightarrow \text{cos x dx} = dt\]
\[ \therefore I = \int\frac{dt}{2 + 3t}\]
\[ = \frac{1}{3}\text{ln }\left| 2 + 3t \right| + C \left[ \because \int\frac{1}{ax + b}dx = \frac{1}{a}\text{ln }\left| ax + b \right| + C \right]\]
\[ = \frac{1}{3} \text{ln} \left| 2 + 3 \sin x \right| + C \left[ \because t = \sin x \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{\sin^2 x}{1 + \cos x} \text{dx} \]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
`∫ cos ^4 2x dx `
\[\int \sin^2\text{ b x dx}\]
` ∫ cos 3x cos 4x` dx
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int x^2 \text{ cos x dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]