हिंदी

∫ X 3 √ 1 + X 2 D X = a ( 1 + X 2 ) 3 2 + B √ 1 + X 2 + C , Then - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 

विकल्प

  • \[ a = \frac{1}{3}, b = 1\]

  • \[a = - \frac{1}{3}, b = 1\]

  • \[ a = - \frac{1}{3}, b = - 1\]

  • \[ a = \frac{1}{3}, b = - 1\]

     

MCQ

उत्तर

\[ a = \frac{1}{3}, b = - 1\]

 

\[\text{Let }I = \int\frac{x^3}{\sqrt{1 + x^2}}dx\]

\[ = \int\frac{x . x^2}{\sqrt{1 + x^2}}dx\]

\[\text{Let }\left( 1 + x^2 \right) = t\]

\[\text{On differentiating both sides, we get}\]

\[ 2x\ dx = dt\]

\[ \therefore I = \frac{1}{2}\int\frac{t - 1}{\sqrt{t}}dt\]

\[ = \frac{1}{2}\int\left( \frac{t}{\sqrt{t}} - \frac{1}{\sqrt{t}} \right)dt\]

\[ = \frac{1}{2}\int\left( t^\frac{1}{2} - t^\frac{- 1}{2} \right)dt\]

\[ = \frac{1}{2}\left( \frac{2}{3} t^\frac{3}{2} - \frac{2}{1} t^\frac{1}{2} \right) + C\]

\[ = \left( \frac{1}{3} \left( 1 + x^2 \right)^\frac{3}{2} - \sqrt{1 + x^2} \right) + C\]

\[\text{Since, }\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\]

\[\text{Therefore, }a = \frac{1}{3}, b = - 1 . \]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 33 | पृष्ठ २०२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x e^x \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×