हिंदी

∫ 1 ( 2 X 2 + 3 ) √ X 2 − 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
योग

उत्तर

\[\text{ We have,} \]
\[I = \int\frac{dx}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}}\]
\[\text{ Putting  x }= \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int\frac{- \frac{1}{t^2}dt}{\left( \frac{2}{t^2} + 3 \right) \sqrt{\frac{1}{t^2} - 4}}\]
\[ = \int\frac{- \frac{1}{t^2} dt}{\frac{\left( 2 + 3 t^2 \right)}{t^2} \times \frac{\sqrt{1 - 4 t^2}}{t}}\]
\[ = - \int\frac{t\text{ dt}}{\left( 2 + 3 t^2 \right) \sqrt{1 - 4 t^2}}\]
\[\text{ Again  Putting 1 }- 4 t^2 = u^2 \]
\[ \Rightarrow - 8t \text{ dt } = 2u\text{  du}\]
\[ \Rightarrow t \text{ dt} = - \frac{u}{4} \text{ du }\]
\[ \therefore I = \frac{1}{4}\int\frac{u\text{  du}}{\left[ 2 + 3 \left( \frac{1 - u^2}{4} \right) \right] u}\]
\[ = \frac{1}{4}\int\frac{4 \text{ du}}{\left[ 8 + 3 - 3 u^2 \right]}\]
\[ = \int\frac{du}{11 - 3 u^2}\]
\[ = \frac{1}{3}\int\frac{du}{\frac{11}{3} - u^2}\]
\[ = \frac{1}{3}\int\frac{du}{\left( \sqrt{\frac{11}{3}} \right)^2 - u^2}\]
\[ = \frac{1}{3} \times \frac{1}{2 \times \frac{\sqrt{11}}{\sqrt{3}}} \text{ log} \left| \frac{\frac{\sqrt{11}}{\sqrt{3}} + u}{\frac{\sqrt{11}}{\sqrt{3}} - \text{ u}}
\right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log} \left| \frac{\sqrt{11} + \sqrt{3} \text{ u}}{\sqrt{11} - \sqrt{3} \text{ u}} \right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log }\left| \frac{\sqrt{11} + \sqrt{3} \sqrt{1 - 4 t^2}}{\sqrt{11} - \sqrt{3} \sqrt{1 - 4 t^2}} \right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log} \left| \frac{\sqrt{11} + \sqrt{3 - 12 t^2}}{\sqrt{11} - \sqrt{3 - 12 t^2}} \right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log} \left| \frac{\sqrt{11} + \sqrt{3 - \frac{12}{x^2}}}{\sqrt{11} - \sqrt{3 - \frac{12}{x^2}}} \right| + C\]
\[ = \frac{1}{2\sqrt{33}} \text{ log }\left| \frac{\sqrt{11}x + \sqrt{3 x^2 - 12}}{\sqrt{11}x - \sqrt{3 x^2 - 12}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.32 | Q 13 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×