हिंदी

∫ E M Tan − 1 X ( 1 + X 2 ) 3 / 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
योग

उत्तर

\[\text{We have}, \]

\[I = \int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^\frac{3}{2}}\text{ dx}\]

\[\text{ Putting tan}^{- 1} x = t \Rightarrow x = \tan t\]

\[ \Rightarrow \frac{1}{1 + x^2} \text{ dx}= dt\]

\[ \Rightarrow dx = \left( 1 + x^2 \right)dt\]

\[ \Rightarrow dx = \left( 1 + \tan^2 t \right)dt\]

\[ \therefore I = \int\frac{e^{mt}}{\left( 1 + \tan^2 t \right)^\frac{3}{2}}\left( 1 + \tan^2 t \right)dt\]

\[ = \int\frac{e^{mt} dt}{\sqrt{1 + \tan^2 t}}\]

\[ = \int {e_{II}}^{mt} \cos_I t \text{ dt}\]

\[ = \cos t\frac{e^{mt}}{m} - \int\left( - \sin t \right)\frac{e^{mt}}{m} \text{ dt}\]

\[ = \cos t\frac{e^{mt}}{m} + \frac{1}{m}\int e^{mt} \text{ sin t dt }\]

\[ = \cos t\frac{e^{mt}}{m} + \frac{1}{m} I_1 . . . . . \left( 1 \right)\]

\[\text{ Where,} \]

\[ I_1 = \int {e_{II}}^{mt} \sin_I t  \text{  dt}\]

\[ = \sin t\frac{e^{mt}}{m} - \int\cos t\frac{e^{mt}}{m}dt\]

\[ I_1 = \sin t\frac{e^{mt}}{m} - \frac{1}{m}I . . . . . \left( 2 \right)\]

\[\text{ from} \left( 1 \right)\text{  and }\left( 2 \right)\]

\[I = \cos t\frac{e^{mt}}{m} + \frac{1}{m} \left[ \sin t\frac{e^{mt}}{m} - \frac{1}{m}I \right]\]

\[ \Rightarrow I = \cos t\frac{e^{mt}}{m} + \frac{\text{ sin t e}^{mt}}{m^2} - \frac{1}{m^2} I\]

\[ \Rightarrow I + \frac{I}{m^2} = \frac{e^{mt} \left( m \cos t + \sin t \right)}{m^2}\]

\[ \Rightarrow I = \frac{e^{mt} \left( m \cos t + \sin t \right)}{1 + m^2} + C\]

\[ \Rightarrow I = \frac{e^{mt}}{\sqrt{1 + m^2}} \left[ \cos t\frac{m}{\sqrt{1 + m^2}} + \sin t\frac{1}{\sqrt{1 + m^2}} \right] + C\]

\[\text{ Let }  \frac{m}{\sqrt{1 + m^2}} = \cos \theta\]

\[\text{ Then, }\sin\theta = \frac{1}{\sqrt{1 + m^2}}\]

\[ \Rightarrow \cot\theta = m\]

\[ \Rightarrow \theta = \cot^{- 1} m\]

\[ \therefore I = \frac{e^{mt}}{\sqrt{1 + m^2}} \left\{ \cos t \cos \theta + \sin t \sin \theta \right\} + C\]

\[ = \frac{e^{mt}}{\sqrt{1 + m^2}} \left\{ \cos \left( t - \theta \right) \right\} + C\]

\[ = \frac{e^{mt}}{\sqrt{1 + m^2}} \left\{ \cos \left( \tan^{- 1} x - \cot^{- 1} m \right) \right\} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 121 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

` ∫      tan^5    x   dx `


Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×