हिंदी

∫ X Sin − 1 X 2 √ 1 − X 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
योग

उत्तर

\[\int \frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}}dx\]
\[\text{Let} \sin^{- 1} x^2 = t\]
\[ \Rightarrow \frac{1 \times 2x}{\sqrt{1 - x^4}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{x        dx}{\sqrt{1 - x^4}} = \frac{dt}{2}\]
\[Now, \int \frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}}dx\]
\[ = \frac{1}{2}\ ∫    tdt\]
\[ = \frac{t^2}{4} + C\]
\[ = \frac{\left( \sin^{- 1} x^2 \right)^2}{4} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 35 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×