हिंदी

∫ 1 Sin X + Sin 2 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int\frac{1}{\sin x + \sin 2x}dx\]

\[ = \int\frac{1}{\sin x + 2 \sin x \cos x}dx\]

\[ = \int\frac{1}{\sin x \left( 1 + 2 \cos x \right)}dx\]

\[ = \int\frac{\sin x}{\sin^2 x \left( 1 + 2 \cos x \right)}dx\]

\[ = \int\frac{\sin x}{\left( 1 - \cos^2 x \right) \left( 1 + 2 \cos x \right)}dx\]

\[ = \int\frac{\text{ sin  x  dx }}{\left( 1 - \cos x \right) \left( 1 + \cos x \right) \left( 1 + 2 \cos x \right)}\]

\[\text{ Putting  cos  x } = t\]

\[ \Rightarrow - \text{ sin  x  dx } = dt\]

\[ \Rightarrow \text{ sin  x  dx } = - dt\]

\[\therefore I = - \int\frac{1}{\left( 1 - t \right) \left( 1 + t \right) \left( 1 + 2t \right)}dt\]
\[ = \int\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 2t + 1 \right)}dt\]
\[ \therefore \frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 2t + 1 \right)} = \frac{A}{t - 1} + \frac{B}{t + 1} + \frac{C}{2t + 1}\]
\[ \Rightarrow 1 = A \left( t + 1 \right) \left( 2t + 1 \right) + B \left( t - 1 \right) \left( 2t + 1 \right) + C \left( t - 1 \right) \left( t + 1 \right)\]
\[\text{ Putting  t + 1 = 0 or t = - 1}\]
\[ \Rightarrow 1 = A \times 0 + B \left( - 1 - 1 \right) \left( - 2 + 1 \right) + C \times 0\]
\[ \Rightarrow 1 = B \left( 2 \right)\]
\[ \therefore B = \frac{1}{2}\]
\[\text{ Now, putting t - 1 = 0 or t = 1 }\]
\[ \Rightarrow 1 = A \left( 2 \right) \left( 3 \right) + B \times 0 + C \times 0\]
\[ \therefore A = \frac{1}{6}\]
\[\text{ Now, putting 2t + 1 = 0 or t} = - \frac{1}{2}\]
\[ \Rightarrow 1 = A \times 0 + B \times 0 + C \left( - \frac{1}{2} - 1 \right) \left( - \frac{1}{2} + 1 \right)\]
\[ \Rightarrow 1 = C \left( - \frac{3}{2} \right) \left( \frac{1}{2} \right)\]
\[ \therefore C = - \frac{4}{3}\]
\[ \therefore I = \frac{1}{6}\int\frac{1}{t - 1}dt + \frac{1}{2}\int\frac{1}{t + 1}dt - \frac{4}{3}\int\frac{1}{2t + 1}dt\]
\[ = \frac{1}{6} \text{ ln }\left| t - 1 \right| + \frac{1}{2} \text{ log } \left| t + 1 \right| - \frac{4}{3} \text{ ln} \frac{\left| 2t + 1 \right|}{2} + C\]
\[ = \frac{1}{6} \text{ ln} \left| t - 1 \right| + \frac{1}{2} \text{ ln} \left| t + 1 \right| - \frac{2}{3} \text{ ln } \left| 2t + 1 \right| + C\]
\[ = \frac{1}{6}\text{ ln } \left| \cos x - 1 \right| + \frac{1}{2} \text{ ln} \left| \cos x + 1 \right| - \frac{2}{3} \text{ ln }\left| 2 \cos x + 1 \right| + C \left[ \because t = \cos x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 67 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \sec^4 2x \text{ dx }\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \sec^6 x\ dx\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×