हिंदी

∫ − Sin X + 2 Cos X 2 Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
योग

उत्तर

\[\text{Let I} = \int\frac{- \sin x + 2\cos x}{2\sin x + \cos x}dx\]
\[\text{Putting}\ 2\sin x + \cos x  = t\]
\[ \Rightarrow 2\cos x - \sin x = \frac{dt}{dx}\]
\[ \Rightarrow \left( - \sin x + 2\cos x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{ln}\left| t \right| + C\]
\[ = \text{ln }\left| 2\sin x + \cos x \right| + C \left[ \because t = 2\sin x + \cos x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.08 | Q 29 | पृष्ठ ४८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \cot^6 x \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \cot^5 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int \log_{10} x\ dx\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×