Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I} = \int\frac{- \sin x + 2\cos x}{2\sin x + \cos x}dx\]
\[\text{Putting}\ 2\sin x + \cos x = t\]
\[ \Rightarrow 2\cos x - \sin x = \frac{dt}{dx}\]
\[ \Rightarrow \left( - \sin x + 2\cos x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{ln}\left| t \right| + C\]
\[ = \text{ln }\left| 2\sin x + \cos x \right| + C \left[ \because t = 2\sin x + \cos x \right]\]
APPEARS IN
संबंधित प्रश्न
Integrate the following integrals:
Evaluate the following integrals:
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]