Advertisements
Advertisements
Question
Solution
\[\text{Let I} = \int\frac{- \sin x + 2\cos x}{2\sin x + \cos x}dx\]
\[\text{Putting}\ 2\sin x + \cos x = t\]
\[ \Rightarrow 2\cos x - \sin x = \frac{dt}{dx}\]
\[ \Rightarrow \left( - \sin x + 2\cos x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{ln}\left| t \right| + C\]
\[ = \text{ln }\left| 2\sin x + \cos x \right| + C \left[ \because t = 2\sin x + \cos x \right]\]
APPEARS IN
RELATED QUESTIONS
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
` ∫ 1/ {1+ cos 3x} ` dx
Integrate the following integrals:
Evaluate the following integrals:
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]