English

∫ − Sin X + 2 Cos X 2 Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
Sum

Solution

\[\text{Let I} = \int\frac{- \sin x + 2\cos x}{2\sin x + \cos x}dx\]
\[\text{Putting}\ 2\sin x + \cos x  = t\]
\[ \Rightarrow 2\cos x - \sin x = \frac{dt}{dx}\]
\[ \Rightarrow \left( - \sin x + 2\cos x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{ln}\left| t \right| + C\]
\[ = \text{ln }\left| 2\sin x + \cos x \right| + C \left[ \because t = 2\sin x + \cos x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 29 | Page 48

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


` ∫  1/ {1+ cos   3x}  ` dx


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \tan^4 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×