English

∫ Sin 5 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \sin^5 x \text{ dx }\]
Sum

Solution

∫ sin5 x dx
= ​∫ sin4 x . sin x dx
= ∫ (1 – cos2 x)2 sin x dx

= ∫ (1 – cos4 x – 2 cos2 x) sin x dx
Let cos x = t
⇒ – sin x dx = dt

⇒ sin x dx = – dt
Now, ∫ (1 – cos4 x – 2 cos2 x) sin x dx
=–​∫ (1 + t4 – 2t2) dt

\[= - \left[ t + \frac{t^5}{5} - \frac{2 t^3}{3} \right] + C\]
\[ = - t - \frac{t^5}{5} + \frac{2 t^3}{3} + C\]
\[ = - \cos x + \frac{2}{3} \cos^3 x - \frac{\cos^5 x}{5} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.12 [Page 73]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.12 | Q 2 | Page 73

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×