Advertisements
Advertisements
Question
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
Sum
Solution
\[\int x^2 \cdot e^{x^3} \cdot \cos \left( e^{x^3} \right) dx\]
\[\text{Let e}^{x^3} = t\]
\[ \Rightarrow e^{x^3} \cdot 3 x^2 dx = dt\]
\[ \Rightarrow e^{x^3} \cdot x^2 dx = \frac{dt}{3}\]
\[Now, \int x^2 \cdot e^{x^3} \cdot \cos \left( e^{x^3} \right) dx\]
\[ = \frac{1}{3}\int\cos\left( t \right) dt\]
\[ = \frac{1}{3}\left[ \sin t \right] + C\]
\[ = \frac{1}{3}\left[ \sin \left( e^{x^3} \right) \right] + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int \cos^2 \frac{x}{2} dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int x e^{2x} \text{ dx }\]
\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]