English

∫ X 2 + 1 ( X − 2 ) 2 ( X + 3 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{\left( x^2 + 1 \right) dx}{\left( x - 2 \right)^2 \left( x + 3 \right)}\]

\[\text{Let }\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} = \frac{A}{x - 2} + \frac{B}{\left( x - 2 \right)^2} + \frac{C}{x + 3}\]

\[ \Rightarrow \frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} = \frac{A \left( x - 2 \right) \left( x + 3 \right) + B \left( x + 3 \right) + C \left( x - 2 \right)^2}{\left( x - 2 \right)^2 \left( x + 3 \right)}\]

\[ \Rightarrow x^2 + 1 = A \left( x^2 - 2x + 3x - 6 \right) + B \left( x + 3 \right) + C \left( x^2 - 4x + 4 \right)\]

\[ \Rightarrow x^2 + 1 = A \left( x^2 + x - 6 \right) + B \left( x + 3 \right) + C \left( x^2 - 4x + 4 \right)\]

Equating coefficients of like terms

\[A + C = 1 ..................(1)\]

\[A + B - 4C = 0 ...................(2)\]

\[ - 6A + 3B + 4C = 1 .....................(3)\]

Solving (1), (2) and (3), we get

\[A = \frac{3}{5}, B = 1\text{ and }C = \frac{2}{5}\]

\[ \therefore I = \frac{3}{5}\int\frac{dx}{x - 2} + \int\frac{dx}{\left( x - 2 \right)^2} + \frac{2}{5}\int\frac{dx}{x + 3}\]

\[ = \frac{3}{5} \log \left| x - 2 \right| + \left[ \frac{\left( x - 2 \right)^{- 2 + 1}}{- 2 + 1} \right] + \frac{2}{5} \log \left| x + 3 \right| + C\]

\[ = \frac{3}{5}\log \left| x - 2 \right| - \frac{1}{x - 2} + \frac{2}{5} \log \left| x + 3 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 29 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×