Advertisements
Advertisements
Question
\[\int x^3 \cos x^2 dx\]
Sum
Solution
\[\int x^3 \cos x^2 \text{ dx }\]
\[\text{ Let x}^2 = t \]
\[ \Rightarrow 2x = \frac{dt}{dx}\]
\[ \Rightarrow dx = \frac{dt}{2x}\]
\[ = \frac{1}{2}\left[ \int t \text{ cos t dt } \right]\]
\[\text{Taking t as the first function and cos t as the second function} . \]
\[ = \frac{1}{2}\left[ t\sin t - \int\text{ sin t dt } \right]\]
\[ = \frac{1}{2}\left[ t\sin t + \cos t \right] . . . (1) \]
\[\text{Substituting the value of t in eq} \text{ (1) } \]
\[ = \frac{x^2 \sin x^2}{2} + \frac{\cos x^2}{2} + c\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{1}{1 - \sin x} dx\]
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
` ∫ cos 3x cos 4x` dx
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int x \sec^2 2x\ dx\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]